
Image Processing Using Graphs
Computer exercises

August 12, 2015

1 Purpose

The purpose of these computer exercises is to make you familiar with the
implementation of some of the methods we have encountered in this course.
The exercises themselves are not mandatory, but are intended to give you a
good starting point for working on your individual projects.

2 Getting started

We will use C++ for the exercises. The code provided with the exercises
has been tested with Visual C++, but you are of course free to use any
compiler/IDE.

For reading and writing images, we will use CImg, a small and free library
for working with image data in C++. Documentation for this library can be
found at http://cimg.eu/. This library is included with the source code for
the exercises.

Start by obtaining the source code for the exercises (LINK). The zip file
contains three subdirectories, corresponding to the three exercises described
below.

3 Exercise 1: Minimum cost paths

Implement Dijkstras algorithm to compute, for all pixels in an image, the
cost of the shortest path between the pixel and a user specified set of seeds.

The directory contains the following source files:

• main.cpp: Contains the function main(...)

1

http://cimg.eu/


• Dijkstra.cpp: Contains the function Dijkstra(...). You will write
most of your code in this file.

• Dijkstra.h: Header file for Dijkstra.cpp

• QueueElement.h: We will use the priority queue implementation avail-
able in the C++ standard library. This header defines a class of queue
elements to populate the priority queue. A queue element represents
a path throught the graph, and contains information about the coor-
dinate of the pixel representing the endpoint of the path, and the cost
of the path.

The main function loads two images, specified by the command line argu-
ments, into memory. The first image is the image used to define the graph in
which we compute the shortest paths. The second image (which must have
the same dimensions as the first one) is used to define the seedpoints. Every
pixel in the second image whose intensity is greater than zero is taken to be
a seed. Then, the main function calls the Dijkstra() function to compute
length of the shortest paths from the seeds to all other pixels. The resulting
distance values are then normalized to the range 0 − 255 and written to the
file result.bmp.

Your task is to complete the implementation of Dijkstras algorithm in the
file Dijkstra.cpp. Assume that every pixel is adjacent to its four horizontal
and vertical neighbors. We will not store the graph edges and their weight
explicitly. Instead, we will calculate them implicitly during the execution of
Dijkstras algorithm. First, let the weight of each edge be 1. Once you have
completed the implementation, try to change the weight of each edge to be
the absolute difference in intensity between the pixels spanned by the edge.

4 Exercise 2: Minimum spanning trees

Implement Prim’s algorithm to compute a segmentation by minimum span-
ning forests relative to a set of labeled seeds. When completed, your program
should output an image where every pixel is assigned the same label as the
seed to which it is connected on a minimum spanning forest relative to the
seeds.

The directory contains the following source files:

• main.cpp: Contains the function main(...)

• MSF.cpp: Contains the function MSF(...). You will write most of your
code in this file.

2

http://www.cplusplus.com/reference/queue/priority_queue/


• MSF.h: Header file for MSF.cpp

• QueueElement.h: We will use the priority queue implementation avail-
able in the C++ standard library. This header defines a class of queue
elements to populate the priority queue. A queue element represents
an edge to be added to the forest, and contains information about the
coordinate of the pixel representing the endpoint of the edge, the weight
of the edge, and the label of the starting point of the edge.

The main function loads three images, specified by the command line
arguments, into memory. All images must have the same dimensions.The
first image is the image used to define the graph in which we compute the
MSF. The second image is used to define the seedpoints. Every pixel in
the second image whose intensity is greater than zero is taken to be a seed.
The label of the each seed is read from the corresponding pixel in the third
image. Then, the main function calls the MSF() function to compute an MSF
segmentation. The resulting labeled image is written to the file result.bmp.

Your task is to complete the implementation of Prim’s algorithm in the
file MSF.cpp. Assume that every pixel is adjacent to its four horizontal and
vertical neighbors. We will not store the graph edges and their weights
explicitly. Instead, we will calculate them implicitly during the execution of
Prim’s algorithm. Let the weight of each edge to be the absolute difference
in intensity between the pixels spanned by the edge.

5 Exercise 3: Minimal graph cuts

In this exercise we will use the min cut/max flow implementation availble
from http://vision.csd.uwo.ca/code/ to compute minimum graph cut
segmentations on pixel adjacency graphs. In addition to the above mentioned
max flow implementation, the directory contains a single file: main.cpp.
Your task is to modify this file to solve the same two-label segmentation
problem as in Exercise 2, using minimum graph cuts instead of minimum
spanning forests for the actual segmentation step.

The given main function shows how to construct a simple graph and
compute a binary segmentation corresponding to minimum cut. Modify this
code to contruct a pixel adjacency graph identical to that in Exercise 2,
perform minmum graph cut segmentation, and save the resulting labeling to
an image file. How do the segmentation results compare to those obtained
in Exercise 2?

3

http://www.cplusplus.com/reference/queue/priority_queue/
http://vision.csd.uwo.ca/code/

	Purpose
	Getting started
	Exercise 1: Minimum spanning trees
	Exercise 2: Minimum cost paths
	Exercise 3: Minimal graph cuts

