Combinatorial optimization and its applications in image Processing

Filip Malmberg

Part 1: Optimization in image processing

Optimization in image processing

Many image processing problems can be formulated as optimization problems - we define a function that assign a "goodness" value to every possible solution, and then seek a solution that is as "good" as possible.

- Image segmentation
- Image registrations/stereo matching/optical flow
- Image restoration/filtering

The "goodness" criterion is often referred to as an objective function.

Application 1: Image registration

Non-rigid Image registration

- Given two images, find a transformation (deformation field) that aligns one image to the other.
- Registration, stereo disparity, optical flow...

Example: Medical Image registration

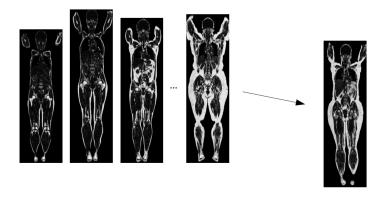


Figure 1: Registering a series of whole body MRI images to match a common "mean person" facilitates direct comparisons between subjects.

Example: Optical flow

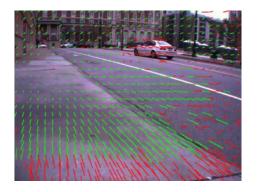


Figure 2: Registering consecutive frames in a video sequence facilitates, e.g., tracking and motion analysis.

Example: Optical flow for slowmotion

https://www.youtube.com/watch?v=xLqz09-3vHg

Figure 3: By computing optical flow in a video sequence, it is possible to interpolate new frames inbetween the captured ones, to simulte slow motion photography.

Image registration as optimization

- Image registration can be formulated as an optimization problem.
- Typically, we seek a solution that maximizes some notion of similarity between the images, while also maintaining some degree of smoothness of the deformation field.

Application 2: Image segmentation

Image segmentation

- Image segmentation is the task of partitioning an image into relevant objects and structures.
- Image segmentation is an ill-posed problem...

Figure 4: What do we mean by a segmentation of this image?

Image segmentation

- Image segmentation is the task of partitioning an image into relevant objects and structures.
- Image segmentation is an ill-posed problem...
- ...Unless we specify a segmentation target.

Figure 5: Segmentation relative to semantically defined targets.

Image segmentation

We can divide the image segmentation problem into to two tasks:

- Recognition is the task of roughly determining where in the image an object is located.
- Delineation is the task of determining the exact extent of the object.

Semi-automatic segmentation

- Humans outperform computers in recognition.
- Computers outperform humans in delineation.
- Semi-automatic segmentation methods try to take advantage of this
 by letting humans perform recognition, while the computer does the
 delineation.
- The goal of semi-automatic segmentation is to minimize user interaction time, while maintaining a tight user control to ensure correct results.

Semi-automatic segmentation

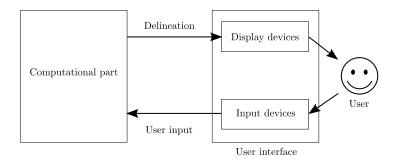


Figure 6: The interactive segmentation process.

Paradigms for user input: Initialization

 The user provides an initial segmentation that is "close" to the desired one.

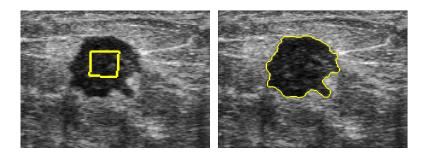


Figure 7: Segmentation by initialization.

Paradigms for user input: Segmentation from a box

• The user is asked to provide a bounding box for the object

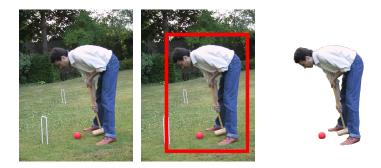


Figure 8: Segmentation from a box.

Paradigms for user input: Boundary constraints

 The user is asked to provide points on the boundary of the desired object(s).

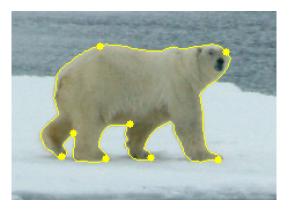


Figure 9: Segmentation with boundary constraints.

Paradigms for user input: Regional constraints

 The user is asked to provide correct segmentation labels for a subset of the image elements ("seed-points")

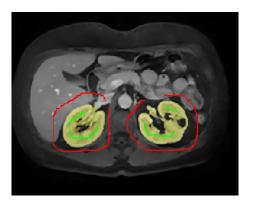


Figure 10: Segmentation with regional constraints.

Hard and soft constraints

- The user input is commonly interpreted in one of two ways
 - *Hard constraints* the conditions specified by the user must be satisfied exactly.
 - Soft constraints the user input guides the segmentation algorithm towards a specific result, but does not reduce the set of feasible solutions.
- Hard constraints give a higher degree of control.
- Soft constraints may require less precise user input.

Application 3: Image restoration/filtering

Image filtering as an optimization problem

- Some image filtering operations can be formulated as an optimization problem with objective functions balancing two criteria:
 - The filtered image should be similar to the original one.
 - The filtered image should be smooth. (e.g. have small gradients)
- A Gaussian filter, for example, can be viewed as the solution to such an optimization problem.

Image filtering as an optimization problem, why?

- What do we gain from viewing filtering as an optimization problem?
- Perhaps not that much, for ordinary filtering operations such as Gaussian filters.
- But it can be useful to keep this view if we want to develop new filters, e.g., edge preserving *anisotropic* filters . . .

Example: Edge preserving filter

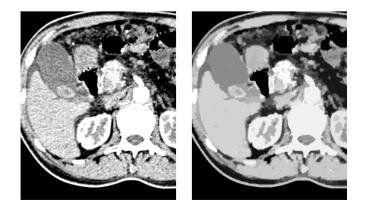


Figure 11: Image by Couprie et al.

"Typical" optimization problems in image analysis

The optimization problems occurring in the applications studied so far have a number of things in common:

- They are *pixel labeling* problems. In all cases, we seek to assign some type of *labels* (values) to the pixels of the image:
 - Object classes for segmentation.
 - Displacement vectors for registration.
 - Intensities/colours for restoration.
- The objective function consists of two terms:
 - A *data term* that measures how appropriate a label is for a certain pixel given some prior knowledge.
 - A smoothness term that favours spatial coherency.

Throughout the course, we will study optimization problems of this type.

Part 2: Combinatorial optimization

Combinatorial optimization

- A combinatorial optimization problem consists of a *finite* set of candidate solutions S and an objective function $f: S \to \mathbb{R}$.
- In our examples, S will be typically be the set of all maps from the vertices of a graph to some set of *labels*.
- The objective function function f can measure either "goodness" or "badness" of a solution. Here, we assume that we want to find a solution $x \in \mathcal{S}$ that minimizes f.
- Ideally, we want to find a *globally minimal* solution, i.e., a solution $x^* \in \operatorname{argmin} f(x)$.

Combinatorial optimization

- It is tempting to view the objective function and the optimization method as completely independent. This would allow us to design an objective function (and a solution space) that describes the problem at hand, and apply general purpose optimization techniques.
- For an arbitrary objective function, finding a global optima recuires checking all solutions.
- ullet The set ${\cal S}$ of solutions is finite. Can't we just search this set for the globally optimal solution?

How hard is combinatorial optimization?

- In vertex labeling, the number of possible solutions is $|L|^{|V|}$.
- Consider binary labeling of a 256×256 image.
- The number of possible solutions is 2⁶⁵⁵³⁶. This is a ridiculously large number!
- Searching the entire solution space for a global optimum is not feasible!

So, what do we do?

- For restricted classes of optimization problems, it is sometimes
 possible to design efficient algorithms that are guaranteed to find
 global optima. In upcoming lectures, we will cover some of these.
- Local search methods can be used to find *locally optimal solutions*. This is the topic of the remainder of this lecture.

Local optimality

- Define a neighborhood system \mathcal{N} that specifies, for any candidate solution x, a set of *nearby* candidates $\mathcal{N}(x)$.
- A local minimum is a candidate x^* such that $f(x^*) \leq \min_{x \in \mathcal{N}(x^*)} f(x)$.

Local search

- A general method for finding local minima.
 - Start at an arbitrary solution.
 - While the current solution is not a local minimum, replace it with an adjacent solution for which *f* is lower.
- This algorithm is guaranteed to find a locally optimal solution in a finite number of iterations. (Proving this statement is one of the exercises!)

Local search spaces as graphs

- ullet We have a set ${\cal S}$ and an adjacency relation ${\cal N}.$
- It's a (huge) graph!
- We never store this graph explicitly, but it can be useful to consider.
- For example, it seems reasonable to define the adjacency relation so that the graph of the search space is connected.

Local search

- "This algorithm is guaranteed to find a locally optimal solution in a finite number of iterations. Why?"
 - The number of solutions is finite.
 - If the algorithm terminates, the result is a local minimum. (Why?)
 - Each connected component in the graph of the search space contains at least one local minimum. (Why?)
 - A solution is never visited more than once. (Why?)

Best-improvement search

- In best-improvement search, we consider all states in the local neighborhood of the current state. We accept the one that best improves the objective function.
- In first-improvement search, we consider the states in the local neighborhood of the current state one at a time. We accept the first one that improves upon the current state.
- Which one gives the best results? Which leads to a faster algorithm?
 Not possible to say in the general case...

Local search with restarts

- Run the algorithm several times.
- "Patience" factor.
- With infinite patience, we will find a locally optimal solution with probability 1.
- With infinite restarts, we will find a globally optimal solution with probability 1.

Simulated annealing

- Accept "worse" states with some probability.
- The probability can decrease over time.

Let's take a look simple binary thresholding

- Let I(v) be the intensity of the pixel corresponding to v.
- ullet Given a threshold t, we compute a vertex labeling according to:

$$\mathcal{L}(v) = \begin{cases} \text{foreground} & \text{if } I(v) \ge t \\ \text{background} & \text{otherwise} \end{cases} . \tag{1}$$

Next, we will reformulate this as an optimization problem.

We define the objective function f as

$$f = \sum_{v \in V} \Phi(v) , \qquad (2)$$

where

$$\Phi(v) = \begin{cases} abs(max(t - I(v), 0)) & \text{if } \mathcal{L}(v) = foreground \\ abs(max(I(v) - t, 0)) & \text{otherwise} \end{cases}$$
 (3)

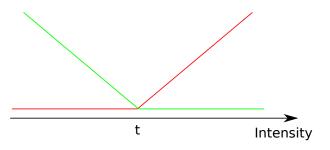


Figure 12: Objective function for binary thresholding. The red curve is the cost of assigning the label "background" to a vertex with a certain intensity, and the green curve is the cost of assigning the "foreground" label.

Optimization by local search

- We say that two vertex labelings are adjacent if we can turn one into the other by changing the label of *one* vertex.
- We start from an arbitrary labeling, and use first-improvement search to find a locally optimal solution.

Optimization by local search, algorithm

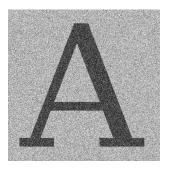


Figure 13: Thresholding as an optimization problem.

- Start from an arbitrary labeling.
- In this case, the label of each pixel does not depend on the label of any other pixels, so a local optimum is reached after only one iteration of the while-loop.
- (This optimum is in fact also global)

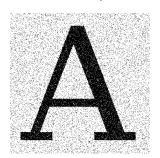


Figure 14: Thresholding as an optimization problem.

• Let us add to the objective function a smoothness term $|\partial \mathcal{L}|$, that penalizes long boundaries:

$$f = \sum_{v \in V} \Phi(v) + \alpha |\partial \mathcal{L}|, \qquad (4)$$

where α is a real number that controls the degree of "smoothing".

Figure 15: Thresholding with smoothness term.

Unary and binary terms

- ullet The data term ϕ in the example is a sum over the pixels in the image. In this term, each pixel is considered individually. We say that ϕ is a unary term.
- In contrast, the smoothness term is defined over all *pairs* of adjacent pixels (edges, in the graph context). We say that this term is *binary*.

- After adding the (binary) smoothness term, we have introduced a dependency between the labels of adjacent pixels. We can no longer decide on the best label for each pixel independently!
- This makes the optimization problem harder to solve.
 - The local search algorithm requires many passes over the image before convergence.
 - The local solution is no longer guaranteed to be a global optimum.

A note on efficient implementation

- In our example, the objective is a sum over all pixels in the image (and all edges in the cut corresponding to the current segmentation).
- Evaluating the entire objective function at each iteration is expensive.
- Instead, we can calculate how much the objective function *changes* when we change the label of a vertex.
- This is good to keep in mind when designing the objective function.

When is local search useful?

Similar solutions should have similar costs ("continuous" objective function).

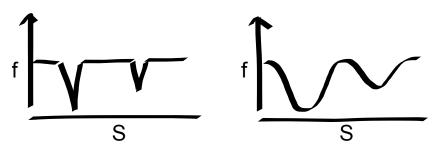


Figure 16: (Left) An objective function that is hard to optimize using local search (Right) An objective function that is possible to optimize using local search.

Very large-scale neighborhood search

- To avoid getting trapped in poor local minima, it is desirable to use as large neighborhoods as possible.
- ...but large neighborhoods lead to slow computations.
- For some problems, we can find efficient algorithms for computing globally optimal solution within a subset of S. If we use this subset as our local neighborhood, we can do best-improvement search!
- We will look at one such technique in an upcoming lecture.

Global optimization

- For a general combinatorial optimization problem, finding the optimal solution requires checking all solutions.
- For specific classes of problems, we can do better!
- Quite remarkably, there are many algorithms for solving optimization problems of interest in image analysis that guarantee globally optimal results
- In this course we will cover some of the most important such methods.

Summary

- Many image analysis problems can be formulated as (combinatorial) optimization problems.
- Local search methods can be used to find *locally* optimal solutions to any combinatorial optimization problem.
- Depending on the problem and the local search strategy used, these locally optimal solutions may or may not be good enough.
- For many interesting combinatorial optimization problems we can find globally optimal solutions efficiently. More on this later!

